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Abstract. In this paper, the problem of finding integrals of motion of three-dimensional 
dynamical systems is analysed. We introduce a new type of direct method in the search 
afparametervaluesforwhichanintegralofmotionexists.This methodconsistsinprapasing 
an ansatz for the integral that explicitly shows the dependence with respect to one o f t h e  
phase space coordinates of the syslem. We apply this procedure to the reduced three-wave 
interaction problem and to the Rabinovich system. For both models new integrals ofmation 
are found. 

1. Introduction 

Dynamical systems described by coupled nonlinear ordinary differential equations are 
a common occurrence in many branches of applied science. These equations are 
generally non-Hamiltonian (i.e. not derived From a Hamiltonian function) and describe 
the time evolution of physical processes which are mainly dissipative in character. 
During such processes phase space volumes contract and the motion is often attracted 
by fixed points or periodic orbits. 

However, the great majority of nonlinear systems have ranges of parameter values 
for which the solutions approach a much more complicated type of attractor. These 
are subsets of phase space wiih a Canior-iike struciure, caiied sirange attractors, on 
which the motion is widely chaotic in the sense that it depends sensitively on the choice 
of initial conditions. 

The subject of self-generated chaotic behaviour in simple dynamical systems is by 
now widely recognized as one of the most interesting and intensively studied areas of 
mathematical physics [ l ,  21. 

and possess large classes of solutions with truly random properties is generally 
appreciated. 

However, to date, important questions such as how to identify integrable dynamical 
systems, or how to determine the size of regions of chaotic behaviour in phase space, 
remain unresolved [3]. 

Of c=:rse, :he =ai:: di!?ic-!ty -ith io:eg:a:ing the ordinary ditferen:ia! rq:a:ions 
of any dynamical system is that these equations are generally nonlinear and involve 
several degrees of freedom, which are coupled to each other in a non-trivial way. So 
far, most of the progress has been done in  the area of integrable Hamiltonian systems, 
where a number of rigorous results are known [4]. However, despite the long history 
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of the problem no general method is available to date, even for deciding whether a 
given dynamical system is integrable, let alone integrating its equations of motion 
explicitly. In recent years, a direct method has been proposed for identifying integrable 
dynamical systems by requiring that their solutions possess no movable (i.e. initial 
condition dependent) singularities other than poles in the complex time plane [ 5 ] .  
This so-called Painlev6 property was originally adopted by Kowalevskaya in her 
celebrated integration of a special case of rigid body motion, and was employed by 
Painlev6 and coworkers in their exhaustive studies of integrable equations of second 
order 161. The Painlev6 property has been used successfully to  identify new integrable 
Hamiltonian systems, as well as integrable cases of non-Hamiltonian systems such as 
the Lorenz equations, the Lotka-Volterra system, etc. [ 5 ] .  

Unfortunately, this method, of high practical value, is not supported by a firmly 
established mathematical basis. Moreover, the Painlev6 analysis method puts emphasis 
on complex analytic integrals and is not well adapted to the search for integrals in the 
real domain. 

Very recently another method for finding integrals for three-dimensional ordinary 
differential equations has been employed [7,8]; the method is based on the Frobenius 
integrability theorem. The main point of the method is to detect the values of the 
parameters for which the system can have first integrals which at the same time are 
integrals of some non-trivial linear system of three differential equations with constant 
coefficients. With this procedure new constants of motion have been found for the 
Lotka-Volterra systems. The Lie symmetry method has also been applied for searching 
for constants of motion of dynamical systems, but, in general, no new results, when 
compared with other procedures have been found [9]. 

Another usual procedure is to make a specific ansatz for the integral, as for example 
to propose a polynomial of a given degree in the phase space coordinates of the system. 
This procedure has been employed by Kus [IO] for obtaining new constants of motion 
for the Lorenz model which d o  not fulfil the Painlev6 criterion. 

In this paper we also employ an ansatz for the integral, but of a more general 
character. We propose a polynomial in one of the coordinates of the system, the 
coefficients of which are unknown functions of the other coordinates. These functions 
must satisfy an overdetermined set of partial differential equations, which are compat- 
ible only for particular values of the parameters of the system. 

We employ this method to  study the three-wave interaction problem, the Rabinovich 
system and the Lorenz model. 

For the three-wave problem and the Rabinovich system we recover systematically 
all the integrals of motion previously known and we also find several new ones. In 
the case of the Lorenz model we recover all the known results obtained by other 
methods but we are not able to  find new cases for which an integral of motion exists. 

In section 2 we treat the three-wave interaction problem. In section 3 we analyse 
the Rabinovich system. The Lorenz model is briefly considered i n  section 4, while in 
section 5 some conclusions are established. 

H J Giacomini el a1 

i. T i e  reduced ihree-wave inieraciion probiem 

As a first three-dimensional dynamical system we will consider the reduced three-wave 
interaction problem. In this system, three quasisynchronous waves interact i n  a plasma 
with quadratic nonlinearities [ 111. 
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The dynamical evolution of this system is determined by the following equations: 

1 = yx+  sy + z - 2y2 

y = yy - sx + 2xy (2.1)  

i = -22 -2zx.  

Here x, y, z are proportional to the amplitudes of the three waves respectively, 8 
measures the detuning from synchronism, and the other linear terms describe effects 
of dissipation and the pumping of external energy [ I l l .  The overdot indicates a 
derivative with respect to time 1. This system has been analysed in [ 121 by means of 
the Painlevt method. The following cases for which an integral of motion exists have 
been found: 

(i) y = 0, S arbitrary, with the integral 

I = r ( y  - 6/2) e2'. ( 2 . 2 )  

(ii) y =  -1 ,  S arbitrary, with the integral 

r = ( x 2 + y 2 + z ) e 2 ' .  (2.3) 

In the special case 6 =0, a second integral has been obtained for case (ii): 

I = zy e" (2.4) 

(there are misprints in ( 3 . 7 )  and (3 .11 )  of [ 1 2 ] ;  the correct expressions are given in 
( 2 . 2 )  and (2 .3 )  of the present paper). 

When the system admits an integral of motion, as in cases (i) and (ii), the analysis 
of its dynamical behaviour, especially in the 1+00 limit, is greatly simplified, and a 
non-chaotic behaviour is observed in general. If we analyse the mathematical structure 
of the integrals (2.2), (2.3) and ( 2 . 4 ) ,  we observe that in the three cases the integral is 
linear in the variable z. Are these integrals the only ones that are linear in z ?  We have 
analysed this problem and we have found two other constants of motion of this type. 
By the nature of the method employed to find these results, we can be sure that no 
other integrals linear in z can be found. 

The general form of a constant of motion linear in z and with an exponential time 
dependence is 

(2.5) 

where a ,  and a2 are arbitrary functions of x and y and n is an arbitrary parameter. 
Taking into account (2 .1 ) .  the condition d I / d r  = O  leads to the following equation: 

azxz2+ [( yx+ sy -2y2 )a , ,  + a , ,  + ( yy - 8 x + 2 x y ) a 2 ,  +(a - 2 ( 1  + x ) ) a J z  

I = ( a l ( x ,  y ) + a 2 ( x ,  y ) z )  err' 

+ ( yx + ay -2y ' )a , ,+  ( y y  - ax+  2 x y ) a , ,  + m a ,  = 0 ( 2 . 6 )  

where the suffixes x and y indicate partial derivatives. 

on the functions a ,  and a2:  
As (2.6) must hold for arbitrary values of z, we must impose the following conditions 

= 0 (2.7~1) 

(2 .7b)  

( 2 . 7 ~ )  

( y x +  8y - 2 y 2 ) a Z v  + a,  ~ +( y.y - 8 x + 2 x y ) a 2 ,  + ( n  - 2 (  1 + x ) a , )  = 0 

( y x  + 6 y  - 2 y 2 ) a , ,  +( yy - S x + Z x y ) a , ,  + na,  = 0. 
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From ( 2 . 7 ~ )  we have R, = a J y ) .  while (2.76) and ( 2 . 7 ~ )  become 
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a , ,  = -( yy  - sx + 2xy )a ;  - ( a  - 2( 1 + x ) a 2 )  ( 2 . 8 a )  

(2.86) 
where the prime indicates a derivative with respect to y. 

We have two partial differential equations for only one function ofthe two variables 
x and y,  i.e. the function R ,  . The function a2 of the variable y and the parameters a, 
8 and y must be chosen in order to make the two equations (2.8) compatible. 

By replacing (2.8a) in (2.86) we obtain an expression for a , y  in terms of a , ,  a 2 ,  
a ; ,  a;,  x and y,  as follows: 

( y x +  ~y -2y2)a , ,  + ( y y  - 8x+2xy)a,,. + a a ,  = 0 

After imposing the integrability condition a,,,. = a,,, between ( 2 . 8 ~ )  and (2.9) we 
obtain, after some calculations, an explicit expression for a l ,  as follows: 

1 
a ,  = { [ ( 2 a  + 2 a x - a 2 ) ( y y  - Sx+2xy)  

a(2Y - 6) 
- 4 ( y  -2+ a ) y l -  26(-2a + 4 -  y ) y 2  

+ ( 2  - a)(a2  + y 2 ) y  -26yx’ +4yx2y +4y’xy]a, 

+ 2 ( y y  - 8X +2Xy)2(1 - y -  a ) R ; -  ( yy  - 6x + 2xy)’a;} (2.10) 

where we have assumed a # 0. 
The case a = 0 has also been analysed, but it  does not lead to new results. From 

expression (2.10) we can obtain a, ,  and a,&,. Then, we replace the expressions of a,,, 
a l g  and a ,  in ( 2 . 8 ~ ) .  After a long calculation, and taking into account that a2 is a 
function only of y,  we must impose the following conditions, in order to satisfy ( 2 . 8 ~ )  
identically for arbitrary values of x :  

a;=O (2.11) 

[4y8+2a8  - ( 8 y + 4 a ) y ] a 2 + ( 2 y -  8)’(3a + 4 y - 4 ) a ; =  0 (2.12) 

2 y ( 2 y + a ) a 2 +  y ( 2 y -  S) [ -3a+4(1 -  y ) ] a ; =  0. (2.13) 

From (2.11) we have 

a2(Y) = C,Y + c, (2.14) 

where C, and C, are arbitrary constants. 

equations for the parameters a, 8, y ,  C, and C2: 
After replacing (2.14) in (2.12) and (2.13), we obtain the following algebraic 

( 2 . 1 5 ~ )  C , ( y +  a - 2 )  = 0 

( 5 a 8 + 6 8 y - 8 S ) C x + 2 ( a  + 2 y ) C 2  = 0 

y ( y - Z + a ) C ,  = 0  

(2.156) 

(2.1Sc) 

S [ (3a6  +4sy - 4 S ) C ,  + 2(a +2y)C , ]  = 0 (2 .15d)  

y [ ( 3 a S + 4 8 y - 4 S ) C ,  +2(a +2y)C21 = O .  (2.15e) 

There are four cases to consider: 

obtained. 
(i) C, = C2=0.  After using (2.86) it can be shown that no constant of motion is 
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(ii) C,=O,  C 2 # 0 .  In this case, taking a = -27, (2.15) are satisfied; using (2.8b) 
we found that the only possibility to obtain a non-trivial result is to take y = -1 .  
Therefore, we  have C,=O, a = 2  and 6 arbitrary ( i t  can be taken that C 2 =  1 without 
loss of generality). The resulting constant of motion is given in (2.3) and was found 
by Bountis e t  a1 in [ 121 by using the Painlevt approach. 

(iii) C, # 0, C 2 # 0 .  In this case if we take a = 2 - y  and C 2 =  -SC,/Z, (2.15) are 
satisfied. It can be shown that this is the only solution with C ,  # 0. A further calculation 
shows that in order to satisfy (2.86) we must have y = 0 or 6 = 0. For the case y = 0 
we obtain a =2,  a ,  = O  and a 2 = ( 2 y - S ) / 2  (we can take C ,  = 1 without loss of general- 
ity). The resulting integral is the expression (2.2), also found by Bountis er a/ .  

If we consider the second possibility S = 0, we obtain a = 2 - y ,  a ,  = 0 and a2 = y 
( C ,  = 1 ) .  The constant of motion is 

1 =yz e ( 2 - 1 ) ‘  (2.16) 

with y arbitrary and 6 = 0. This result has not been found by Bountis et a/  and is new 
to our knowledge. 

(iv) C ,  i o ,  C,=O. The only solution of (2.15) is y =  -2, a = 4 ,  and (2.8b) is 
identically satisfied in this case. Therefore, the resulting constant of motion is 

1 = ( y 2 + x 2 + 2 y z / 6 )  e4‘ (2.17) 

with S arbitrary, which also constitutes a new result for the three-wave problem 
We have also employed a more general ansatz than (2.5) given by 

l = z P [ n , ( x , y ) + ( l Z ( ~ , ~ ) ~ 1  (2.18) 

where p is a n  arbitrary parameter. The form of the ansatz (2.18) is motivated by the 
fact that the third of equations (2.1) is homogeneous to the first degree in the variable 
z. The resulting equations for the functions a ,  and az are slight modifications of (2.7), 
with an additional parameter p at our disposal. However, after long calculations, we 
have arrived at the conclusion that no new integrals of motion of the form (2.18) exist 
for p # 0. 

3. The Rabinovich system 

The Rabinovich system is a three-wave interaction model whose dynamical evolution 
is determined by the following equations: 

i = h y - u , X + y Z  

j = hx - u2y -xz 

i = -u,z + x y  

(3.1) 

where U,, U*, u3 are the damping rates and h is proportional to the driving amplitude 
of the feeder wave [ l l ] .  

This model has been studied by Bountis er a /  by means of the Painlevt method. 
The following cases for which a constant of motion exists have been found by these 
authors: 

(3.2) I = (x2 + y2 - 4/12) e’”‘ 

with the conditions U, = v2 = U > 0, vi = 2 U ;  
/=(X2-y2-2z*)e2”‘  (3.3) 
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with the conditions U, = v2 = v, = v>O; and 
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r= (x2+y2)e2" '  (3.4) 
with h = O ,  u , = v , = u > O .  

we propose the following ansatz in order to find new integrals of this type: 
The three integrals of motion presented above are linear in x2. Guided by this fact 

I = [al(y, z ) +  a2(y, zb21 e"' (3.5) 

Obviously, other forms for the ansatz can be proposed. For instance, constants of 
motion that are linear in y 2  or quadratic in z can be analysed. Also, polynomials in 
x2 or y 2  of degree greater than one can be considered. In this paper we have limited 
our study to the form (3.5). The condition d I /d r  = 0 leads to the following equations 
for the functions a,  and a>: 

~ ~ y a , ~ + ~ ~ z a , ~ = a a ,  ( 3 . 6 ~ )  

( h  - z ) a , ,  +ya,,+2y(h + z ) a 2 = 0  ( 3 . 6 b )  

v2ya,,,+ v,za2, =(a -2u,)a2 ( 3 . 6 ~ )  

(h-z)a2y+ya21=0.  ( 3 . 6 d )  

... I.̂-̂ " 
Wk,G,C U, and ii2 aie fiii;c:ioas on:y of L' and i, and ii is an zimiarj paiaiiietei. 

F:o- (3 .6r)  axd (? .6d )  -e de:e:EiEe a?, a-d ah. !x :erms of c2 ,  y axd 2. By i-posing 
the compatibility condition a2xv = a2yr the function a2 can be found. 

After this we replace the expression for a2 and its partial derivatives in ( 3 . 6 ~ )  and 
( 3 . 6 d ) .  In order to satisfy these equations identically we must impose some algebraic 
conditions on the parameters of the model. 

The second step of the calculation consists of replacing the a2 expression in ( 3 . 6 b )  

After some calculations we have found by means of the procedure described above 
the following new constants for this system (obviously, we have also reobtained the 
known cases (3.2), (3 .3 )  and (3.4)): 

and to repeat the pmced.r. for !3.5c! and (3 .6d )  with (3.60) and (3.6h)I 

I = y 2 + ( h  -2)' (3.7) 

with u2 = vl = 0, h and vI  arbitrary; 

I = x2- (z+ h)2 (3.8) 

with uI = U, = 0, h and v2 arbitrary; 

I=(Y2+z2)e2">' (3 .9 )  

with v 2 =  U], h =0, U, and v3 arbitrary; 

I = ( x ' - z 2 )  e2">' (3.10) 

with v ,  = U,, h = 0, v2 and v j  arbitrary. 
Following the terminology of Bountis e l  al [U], we call a case partially integrable 

when a constant of motion exists. In general, two independent integrals are necessary 
in order to have complete integrability of the equations of motion in terms of known 
fr?.ctio"s. 

In this work we do not study the integrability problem. We only investigate the 
conditions for which at  least one integral of motion can be found. The existence of 
such an integral rules out the possibility of chaotic behaviour, strange attractors, etc., 
but does not assure integrability. 
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4. The Lorenz model 

The celebrated and intensively studied Lorenz equations 

i = u ( y  - x )  

j = - y  + px -xz ( 4 . 1 )  

i = - bz + xy 

arise in simple models of hydrodynamic turbulence [ 1 3 ] .  
Several authors have analysed the problem of finding particular cases of the values 

of parameters o, p, b for which an integral of motion exists [ 7 , 9 , 1 0 , 1 2 ,  141. In that 
case, one of course would expect no strange attractors or chaotic behaviour to be 
present. All the integrals of motion that have been found for the Lorenz model are 
polynomials of degree G4 in the variables x, y and z. In particular, with respect to z 
they are polynomials of degree ~ 2 .  

Taking into account this fact we have considered the following ansatz for I :  

1 = [ a l ( x ,  y ) + a h ,  y ) Z + a , ( x ,  Y)z ' ]  e"'. (4 .2)  

The condition d l l d t  = O  leads to the following equations for the functions a , ,  a2  and 
a,: 

a,,, = 0 ( 4 . 3 a )  

u ( y  - x ) a , ,  -xaZy +( a - 2 b ) a ,  = 0 (4 .3b)  

(4 .3c)  

( 4 . 3 d )  

We have solved this system of equations by the same procedure employed in sections 
2 and 3 .  

After a long calculation we have reobtained all the known integrals of motion of 
the Lorenz model, but we have not found new results. In consequence, we can assert 
that the Lorenz model has no other polynomial constants of motion of degree S 2  in 
the variable z. A more general ansatz than (4 .2)  can be considered (i.e. a polynomial 
of degree 3 in L )  but the calculations become much more involved. 

u ( y  - x ) a 2 ,  - x a , , . +  ( p x  - y ) a 2 , ,  +2xya ,+  (a - b ) a 2  = 0 

u ( y  - x ) a , , + ( p x -  y ) a , ,  + x y a , + a a ,  = O .  

5. Conclusions 

We have employed in this paper a direct method for the search of constants of motion 
of three-dimensional dynamical systems. The method consists in proposing an ansatz 
for the invariant which is a polynomial of a given degree in one of the coordinates of 
the phase space of the system. The coefficients of this polynomial are arbitrary functions 
of the other coordinates of the phase space. 

These functions must satisfy a system of partial differential equations. We have 
shown in the examples treated in  this paper that this system of equations can be solved, 
but the complexity of the calculations strongly increases with the degree of the 
polynomial proposed in the ansatz. 

For dissipative systems, this type of ansatz has not been employed before to our 
knowledge. 



4514 H J Giacomini et a /  

In general, the ansatz previously utilized before consists of proposing a polynomial 
in all the coordinates of the system, where the coefficients are free parameters to be 
determined in order to have a constant of motion, as for example in the work of Kus 
[lo]. 

The method employed in this paper has proven to be a very efficient tool in the 
search for constants of motion for three-dimensional dynamical systems. We have 
found several new integrals for the three-wave interaction problem and for the 
Rabinovich model. For the Lorenz equations we have not been able to find new 
constants of motion but we have reobtained all the known ones. 

The method is also applicable to higher-dimensional dynamical systems and we 
think that it represents a complement to the usual approach based on the Lie symmetry 
method, the Painlevt property and the Frobenius integrability theorem recently intro- 
duced by Strelcyn and Wojciechowski. 

Nore added. The referee has pointed out that the method employed in this paper is very similar to much 
work being done on the search for small-amplitude limit cycles and centre conditions for two-dimensional 
systems with polynomial right-hand sides. A recent review an problems can be found i n  [IS]. 
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